Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Indian Journal of Biochemistry and Biophysics ; 60(4):281-296, 2023.
Article in English | Scopus | ID: covidwho-2325418

ABSTRACT

Spontaneous mutations and lack of replication fidelity in positive-sense single stranded RNA viruses (+ssRNA virus) result in emergence of genetic variants with diverse viral morphogenesis and surface proteins that affect its antigenicity. This high mutability in +ssRNA viruses has induced antiviral drug resistance and ability to overcome vaccines that subsequently resulted in rapid viral evolution and high mortality rate in human and livestock. Computer aided vaccine design and immunoinformatics play a crucial role in expediting the vaccine production protocols, antibody production and identifying suitable immunogenic regions or epitopes from the genome sequences of the pathogens. T cell and B cell epitopes can be identified in pathogens by immunoinformatics algorithms and methods that enhance the analysis of protective immunity, vaccine safety, immunity modelling and vaccine efficacy. This rapid and cost-effective computational vaccine design promotes development of potential vaccine that could induce immune response in host against rapidly mutating pathogens like +ssRNA viruses. Epitope-based vaccine is a striking concept that has been widely employed in recent years to construct vaccines targeting rapidly mutating +ssRNA viruses. Therefore, the present review provides an overview about the current progress and methodology in computer-aided vaccine design for the most notable +ssRNA viruses namely Hepatitis C virus, Dengue virus, Chikungunya virus and Coronaviruses. This review also highlights the applications of various immunoinformatics tools for vaccine design and for modelling immune response against +ssRNA viruses. © 2023, National Institute of Science Communication and Policy Research. All rights reserved.

2.
Indian Journal of Biochemistry and Biophysics ; 59(11):1088-1105, 2022.
Article in English | Scopus | ID: covidwho-2146952

ABSTRACT

SARS-CoV-2 pandemic has become a major threat to human healthcare and world economy. Due to the rapid spreading and deadly nature of infection, we are in a situation to develop quick therapeutics to combat SARS-CoV-2. In this study, we have adopted a multi-level scoring approach to identify multi-targeting potency of bioactive compounds in selected medicinal plants and compared its efficacy with two reference drugs, Nafamostat and Acalabrutinib which are under clinical trials to treat SARS-CoV-2. In particular, we employ molecular docking and implicit solvent free energy calculations (as implemented in the Molecular Mechanics-Generalized Born Surface Area approach) and QM fragmentation approach for validating the potency of bioactive compounds from the selected medicinal plants against four different viral targets and one human receptor (Angiotensin-converting enzyme 2-ACE-2) which facilitates the SARS-CoV-2 entry into the cell. The protein targets considered for the study are viral 3CL main protease (3CLpro), papain-like protease (PLpro), RNA dependent RNA polymerase (RdRp), and viral spike protein-human hACE-2 complex (Spike:hACE2) including human protein target (hACE-2). Herein, there liable multi-level scoring approach was used to validate the mechanism behind the multi-targeting potency of selected phytochemicals from medicinal plants. The present study evidenced that the phytochemicals Chebulagic acid, Stigmosterol, Repandusinic acid and Geranin exhibited efficient inhibitory activity against PLpro while Chebulagic acid was highly active against 3CLpro. Chebulagic acid and Geranin also showed excellent target specific activity against RdRp. Luteolin, Quercetin, Chrysoeriol and Repandusinic acid inhibited the interaction of viral spike protein with human ACE-2 receptor. Moreover, Piperlonguminine and Piperine displayed significant inhibitory activity against human ACE-2 receptor. Therefore, the identified compounds namely Chebulagic acid, Geranin and Repandusinic acid can serve as potent multi-targeting phytomedicine for treating COVID-19. © 2022, National Institute of Science Communication and Policy Research. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL